
M O D E R N  PR A C T I C E  I N  ST R E S S  A N D  V I B R A T I O N  A N A L Y SI S

FINITE ELEMENT SIMULATION OF THE MECHANICALLY
COUPLED COOK OFF EXPERIMENT FOR HIGH EXPLOSIVES

J.M. Gerken*, J.G. Bennett*, and F.W. Smith†

This paper develops and applies a method to model dynamic crack
propagation in structures. The technique is developed via the three
field Hu-Washizu Energy Principle for the implicit finite element
method. This method is then incorporated into simulation of an
experiment called the Mechanically Coupled Cook Off (MCCO)
experiment in which a confined sample of polymer bonded
explosive is heated and then ignited. High-speed photographs of the
experiment show a pattern of cracks propagating through the
explosive. The results of the numerical simulation show that the
general features of the experiment are reproduced.

INTRODUCTION

There has been considerable interest in developing numerical models having the
capabili ty to predict the structural static and dynamic response of structures in the
presence of failure by fracture. There are several challenges that must be addressed in
modeling of dynamic crack propagation. Primary among these challenges are
producing the correct material behavior in the presence of fracture and modeling
geometry changes that are a result of crack propagation. Previous and ongoing efforts
to model fracture in structures include most, if not all , of the well developed
computational methods (Liebowitz et al. [1] and Aliabadi [2]). In reviews given by
Nishioka [3] and De Borst [4], among others, it can be seen that much of this effort
has been dedicated to fracture modeling using the finite element method. Some of the
techniques employed include special element formulation to model crack tip
singularities and discontinuities (e.g. Banks-Sill s and Sherman [5], and Lotfi and
Shing, [6]), adaptive meshing (e.g. Nishioka et al. [7]), fracture parameter calculation
(e.g. Li et al. [8], and Parks [9]), damage evolution (e.g. Lemaitre [10]) and discrete
fracture models (e.g. Hoff et al. [11], Liaw et al. [12], and Xu and Needleman, [13]).
While these methods provide valuable computational abiliti es with specific
applications, the main goal of this work is to provide an accurate fracture model that
is comparable in complexity and application to current structural finite element
simulations.
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This paper presents an implicit finite element method, developed by Gerken [14],
that models discrete fracture in two-dimensional structures and addresses the primary
challenges of discrete fracture modeling. The method incorporates discrete fracture
by allowing the propagation of cracks along pre-existing element interfaces. The
approach to developing such a method is to first develop a 2 dimensional finite
element from the Hu-Washizu Energy Principle, which has a small , “virtual” , crack
on its edge. The finite element mesh then contains a virtual crack at each element
interface along which discrete cracks can propagate. The analysis is formulated on the
element level and the implicit finite element code ABAQUS/Standard [15] is used to
enforce the boundary conditions, assemble the global equations and solve for the
nodal variables.

This method is then used in a finite element model of the Mechanically Coupled
Cook Off (MCCO) of High Explosives Experiment. The MCCO experiment is one in
which the “cook-off” of a plastic bonded explosive material is produced by confining
a thick circular ring of the explosive material in a thin circular metal ring and then
subjecting the assembly to a uniform temperature increase. After the explosive
becomes highly reactive, several optical photographs of the explosive are recorded.
One of the phenomenon observed in the photographs is 3 to 5 distinct narrow zones
of luminous activity propagate from the inner surface of the explosive ring outward
towards the confinement ring. These luminous zones are postulated to be the ignition
of newly exposed surface as discrete cracks propagate through the explosive.

The remainder of this paper will present a detailed development of the discrete
fracture model and its application in the finite element simulation of the MCCO
experiment. In the results section it is shown that by introduction of a size distribution
of initial “virtual” cracks, both the mechanical and temporal features of the
experiment are reproduced.

FINITE ELEMENT EQUATIONS

The Hu-Washizu Energy Principle is a three-field principle in which the
displacement, strain and stress fields are independent. Following that of Weissman
and Taylor [16], the Hu-Washizu Principle is stated as
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where : is the volume, u, VV, and HH are the displacement stress and strain fields
respectively, D is the elastic moduli coefficients matrix, HH0 and VV0 are the initial strain
and stress tensors respectively, 3EXT is the external work, and L is the strain
displacement operator.
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Then, taking the first variation of eqn. (1) and equating it to zero,
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where b is the body force, ta is the applied traction, HHa are the external strains.

The region : is subdivided into a finite number of subdomains (elements), :i,
and each region is defined by a finite number of points (nodes). Over these elements,
the approximations for VV, u, and HH along with their respective variations are

VV = Ss; GVV=SGs (3 a, b)

HH = Ee; GHH=EGe (4 a, b)

u = Nd; Gu = NGd   (5 a, b)

where S and E are the stress and strain interpolation functions, s and e are nodal point
parameters, N are the shape functions, and d is the vector of nodal point
displacements. Substituting eqns. (3) – (5) into eqn. (2) and noting that the variations
Gs, Ge, and Gd are arbitrary, the following three equations result,
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The following are defined,
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By substitution of the above definitions, eqns. (6) – (8) become
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If A is invertible1, elimination of e and s yields
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Stiffness matrix

The stiffness matrix is the coefficient on d in eqn. (12). The element is transformed
from its global curvilinear coordinates, [x, y], into local linear coordinates, [[, K],
where –1 d [ d 1, and –1 d K d 1. The interpolation functions for a 4 node plane
element are chosen to be the following [17]
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where the nodal shape functions are

� �� �KK[[ IIIN �� 11
4

1
        (15)

The elastic moduli matrices for plane stress and plane strain respectively are
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where E is the equivalent Young’s modulus and Q is Poisson’s ratio. By substitution
of eqns. (13) – (16) into eqn. (9) the stiffness matrix is formed and integrated
symbolically in the computational software package Maple V Release 4 [18].

Load Vector

The load vector is the left-hand side of eqn. (12). It includes terms for body forces,
initial stress and strain, and externally applied stress and strain. The externally applied

                                                
1 See [16] for conditions on the invertabili ty of A. In this work, the conditions are satisfied and A is
invertable.
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strain field, HHa, is assumed to be due to a small crack on the element edge. The other
terms in the load vector are given standard treatment and are integrated symbolically
in Maple V as with the stiffness matrix.

Shown in Fig. 1, the externally applied strain field is due to a small crack
embedded in an infinite elastic plate subjected to the far field stresses V0, V1, and W0.
The applied strain field is the strain in the adjacent element due only to the presence
of the crack on its edge.

The strain field in the plate subject to the far field stresses shown is determined by

introducing a complex stress function Z(z), where z = [ + iK and i = 1�  [19],
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where a is the half crack width.

By superposition of the Mode I and Mode II stresses, the stresses in the plate are
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where Re and Im denote the real and imaginary parts.

Using the elasticity relations for plane stress and plane strain, the strain field in the
plate is calculated. Far field strains analogous to the far field stress are defined as H0,
H1, and J0. The strain in the vicinity of the crack, due only to the presence of the crack,
is the total strain field around the crack minus the far field strain given by
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This strain field is inserted into eqn. (10a) and integrated numerically with Gauss
Quadrature and the complete load vector is assembled. By assuming superposition of
the strains given by eqn. (21), additional cracks can be placed on each of the element
edges by summing the load vector over the number of edge cracks2. This allows for
the insertion of a crack at each element interface in the mesh so that each element
would have at least one edge crack and at most four.

                                                
2 This assumes that additional cracks in the plate in Fig. 1 can be treated independent of each other.
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Interface Failure

To allow for discrete fracture, each element is defined by unique node numbers and
displacement continuity is enforced across each element interface until the interface
crack fails. While many criteria may be chosen for the failure of the interface crack, it
is a simple matter to apply elastic plastic fracture mechanics as shown below.

First it is assumed that the strain energy release rate, G, is a function of the
interface crack size. A common form of the curve is an exponential of the form

� � 10 RaaG n �� O (22)

where O, R1, and n are material parameters and a0 is the initial crack half width. The
local strain energy release rate at the interface crack is calculated as follows
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where the far field Mode I and Mode II stresses, V0 and W0, are the average of the
stresses from the two elements that are adjacent to the interface crack. Equation (22)
can be inverted to give the change in crack length as follows
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The change in crack length is calculated based on the calculated strain energy
release rate at each interface. If the new crack length is greater than the previous
crack length, the interface crack grows. If this growth causes the crack width to
exceed the interface width, the interface fails and displacement continuity across the
interface is no longer enforced.

MECHANICALLY COUPLED COOK OFF EXPERIMENT

A cartoon of the MCCO experiment performed by Dickson et al. [20] is shown in Fig.
2. A small flat cylinder of the high explosive (HE) PBX 9501 is confined in a metal
ring of copper. The HE and ring assembly is confined between a window at the top
and a solid metal surface at the bottom. The HE specimen has an outer diameter of 25
mm and an inner diameter of 3.175 mm. To simulate the cook-off event, the cylinder
of HE is heated uniformly from both the top and bottom to a temperature below the
auto-ignition temperature, at which point ignition is initiated at the inner surface of
the cylinder by means of an electrically heated NiCr wire.

Experimental observations are made in several ways including the use of a camera
that photographs the HE at intervals of 3 to 5 Psec through the top window. The
sequence of photographs presented in Fig. 3 shows the typical behavior of HE in a
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MCCO experiment after ignition. The photographs show narrow regions of
lumination propagating from the inner surface outward toward the confinement ring.
This lumination is caused by the ignition of fresh HE surface behind cracks as they
propagate. The photographs show that early in the process there are three narrow
cracks starting to propagate outward. As time progresses, much of the HE has started
to chemically react and the lumination overwhelms the details of the discrete cracks
and branching phenomena observed earlier. It is typically observed that 3 to 4 radial
cracks propagate after ignition and that such cracks may subsequently bifurcate.

MECHANICALLY COUPLED COOK OFF SIMULATION

Shown in Fig. 4 is a plane strain model of the copper confinement ring and the PBX
9501. The PBX 9501 consists of 1200 discrete fracture elements described above.
The element dimensions vary from 0.24 mm x 0.17mm on the inner surface to 0.87
mm x 1.33 mm at the copper ring. The confinement ring consists of 180 standard
plane strain elements. The interface between the copper and the HE is modeled as a
perfect bond so that the interface is allowed to deform, but no relative motion
between the HE and the copper is allowed.

The copper used in the experiment is oxygen free copper. An isotropic elastic
plastic material model was used to model the response of the copper. The material has
an elastic modulus of 117 x 109 Pa and a Poisson’s ratio of 0.33. The stress vs. plastic
strain was obtained using a power law model with a yield stress of 65 MPa, a strain
hardening exponent of 0.2 and a yield stress coeff icient of 292 MPa. The coeff icient
of thermal expansion (CTE) of copper is a constant 16.56 x 10-6/qC and the density is
8.9 x 103 kg/m3.

A material model developed by Hackett and Bennett [21] called ViscoSCRAM is
used to model the mechanical and thermal behavior of the explosive. The mechanical
behavior is characterized by a viscous model coupled with a damage model so that it
is rate dependent but loses strength with the buildup of stress. The thermal behavior
includes both mechanical work and chemical decomposition of the explosive. The
material properties of importance for the explosive are the constant CTE of
55 x 10-6/qC and the density of 1.849 x 103 kg/m3. For the conditions of the
experiment it is likely that the material properties are not constant. However, for the
present analysis, they are taken to be constant throughout the entire temperature
range.

For the discrete fracture model, each element interface in the explosive has been
seeded with a small crack. The size of these interface cracks is randomly distributed
throughout the mesh according to an approximately flat distribution such that the
largest crack is approximately 90% of the smallest element width and the smallest
crack is approximately 10% of the smallest element width. This type of definition
allows for the failure conditions for fracture to be different for each interface. Also,
by choosing several different sets of samples to represent the same flat distribution
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and mean crack size, the relationship between the general features of the results and
any particular set of interface cracks can be ascertained.

The fracture properties of PBX 9501 have been estimated based on the limited
information that is available for HE. The parameters from eqn. (22) are E = 2.0, J =
0.1, and O = 0.0.

The interface failure criteria have been modified for this simulation to exclude
shear contributions. This is partially due to the diff iculties in modeling shear
deformation with bili near finite elements. This diff iculty, coupled with the extremely
low fracture toughness of PBX 9501, tends to cause prediction of disperse shear
cracking that is inconsistent with experimental results. Because the deformation in the
experiment is dominated by primarily Mode I type loading, it is felt that this
exclusion will not cause significant error in modeling.

To reproduce the conditions of the experiment, the analysis simulated heating from
room temperature at a rate of 0.6 qC/sec for 200 seconds. After this initial phase, a
pressure of 5 MPa/Psec is applied to the inner surface of the explosive to simulate the
rapid pressurization caused by the ignition in the cavity. This internal pressure causes
a tangential stress to develop in the explosive and, as a result, cracks begin to open.
As these cracks open, the pressure applied to the inner surface is also instantly
applied to the crack faces.

RESULTS

During the heat-up phase of the experiment, both the confinement ring and the
explosive thermally expand. Because the CTE of PBX 9501 is greater than that of
copper, the copper ring serves as a restraint to the expansion of the explosive. At the
end of the heating phase, the tensile tangential stress in the copper ring has exceeded
the material’s yield strength. The compressive tangential stresses in the explosive
have caused enough damage that the inner row of elements no longer supports as
much stress as the next row of elements.

After the heat-up, a pressure of 5MPa/Psec is applied to the inside of the
explosive. As this pressure is applied, it is li kely that the inner row of elements is
further damaged to the point that they can no longer support tensile stresses, therefore
never satisfy the interface failure criterion. However, the stresses in the second (from
the inner surface) row of elements transitions to tension. This tension creates strain
energy that causes the interface cracks to eventually fail . Shown in Fig. 5 is a graphic
of a typical simulation in which many small discrete fractures appear early in the
simulation. While the random nature of the interface crack sizes produces some
variabili ty in the results, different sets of samples with the same distribution and mean
crack size produces generally the same results.

As cracks fail and open up, tensile stresses in the vicinity of the crack are relieved,
thereby reducing the strain energy in nearby elements. In addition to relieving nearby
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tensile stresses, these discrete cracks also create large stress concentrations in front of
the crack, encouraging further growth in the radial direction. Crack growth is further
encouraged by the application of the internal pressure to the crack faces, which
increases the tensile stress acting on the crack. As simulation time progresses, some
of these small cracks will continue to propagate radially outward and some will arrest.
In all of the simulations run to date, 3 to 5 large cracks appear and propagate from
near the inner surface to near the copper confinement ring with several smaller
arrested cracks. Shown in Fig. 6 are the final deformed shapes of four simulations.
Each model is the same except that different sets of random crack sizes, with the
same distribution and mean size, has been used to seed the element interfaces. The
models show that 3 to 5 large cracks appear and propagate out toward the copper ring.
In addition to reproducing the fracture patterns, the total simulation time is similar in
all cases with the times relative to the end of the heat-up phase being: a) 27.4 Psec, b)
26.9 Psec, c) 29.0 Psec, and d) 28.8 Psec.

SUMMARY AND CONCLUSIONS

A finite element model of the Mechanically Coupled Cook Off experiment conducted
on PBX 9501 has been developed. Photographs from the experiment show the
formation of 3 to 5 large discrete cracks that propagate from the inner surface radially
outward toward the confinement ring. The finite element model developed to simulate
the experiments includes the behaviors thought to be essential to modeling the
observed behavior. One key component of the numerical model is a discrete fracture
model which models macroscopic fracture based upon standard fracture criteria.
Although much is still not known about the behavior of PBX 9501, the incorporation
of this model with other finite element modeling techniques has produced a model of
the MCCO that reproduces the photographic observations of the experiment.
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Figure 1. Crack in an infinite plate on the edge of a 2-D solid element
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Figure 2. Setup of MCCO experiment.
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Figure 3. Optical photographs of MCCO experiment.
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Figure 4. Mesh of the MCCO experiment.

Figure 5. Many small cracks appear early in the simulation. 10x displacement.

Figure 6. Several simulations show the appearance of 3 to 5 large cracks.


